MIC-RON.RU

В помощь радиолюбителю

СТАБИЛИЗАЦИЯ Uвых КОНДЕНСАТОРНОГО ВЫПРЯМИТЕЛЯ




Судя по последним публикациям [1...5], интерес радиолюбителей к маломощным бестрансформаторным выпрямителям с гасящим конденсатором не ослабевает.

Действительно, при мощностях нагрузки в доли и единицы ватт они более эффективны, чем устройства с сетевым трансформатором или с высокочастотным преобразователем. Недостатком опубликованных конструкций конденсаторных выпрямителей является резкая зависимость их выходного напряжения от наличия или отключения нагрузки и ее величины. Эту зависимость обычно устраняют, включив на выход выпрямителя стабилитрон, который одновременно является как стабилизатором напряжения, так и нежелательным нагрузочным балластом, т.к. потребляет ток, соизмеримый с током нагрузки. На нем бесполезно рассеивается заметная мощность, и его приходится ставить на радиатор. В [2] для него потребовался радиатор площадью 25см2. Радиатор увеличивает габариты и вес выпрямительного устройства, что является вторым недостатком. В [4] автор частично решил первую проблему за счет применения во входной цепи не одного, а двух сетевых конденсаторов, включенных в виде конденсаторного делителя. Это привело к увеличению величины емкости гасящих конденсаторов и, соответственно, габаритов и веса. Кроме того, увеличилась доля реактивного тока в сети, что также нежелательно.

Предлагаю бестрансформаторный конденсаторный выпрямитель с автостабилизацией выходного напряжения во всех возможных режимах работы (от холостого хода до номинальной нагрузки), лишенный перечисленных недостатков.

Это достигнуто за счет кардинального изменения принципа формирования выходного напряжения - не за счет падения напряжения от импульсов тока выпрямленных полуволн сетевого напряжения на сопротивлении стабилитрона, как в описанных устройствах (рис.1), а за счет изменения времени подключения диодного моста к накопительному конденсатору С2 (рис.2).


Puc.1  


Puc.2  

В описанных устройствах это время постоянно и равно полному периоду сетевого напряжения. Если же выход моста закорачивать ключом К на часть длительности полупериода сети, а в оставшуюся часть полупериода ключ К размыкать, и заряжать в это время выходным током моста конденсатор С2, то напряжение на нем будет зависеть от доли этой оставшейся части по отношению ко всему полупериоду сети. И если, как при ШИМ, автоматически менять время открытого состояния ключа в зависимости от напряжения на С2, можно получить автостабилизацию выходного напряжения конденсаторного выпрямителя.

Схема стабилизированного конденсаторного выпрямителя приведена на рис.3. Параллельно выходу диодного моста включен транзистор VT1, работающий в ключевом режиме (ключ К на рис.2)


Puc.3   

. База ключевого транзистора VT1 через пороговый элемент (стабилитрон VD3) соединена с накопительным конденсатором С2, отделенным по постоянному току от выхода моста диодом VD2 для исключения быстрого разряда при открытом VT1. Пока напряжение на С2 меньше напряжения стабилизации VD3, выпрямитель работает известным образом. При увеличении напряжения на С2 и открывании VD3 транзистор VT1 также отрывается и шунтирует выход выпрямительного моста. Вследствие этого напряжение на выходе моста скачкообразно уменьшается практически до нуля, что приводит к уменьшению напряжения на С2 и последующему выключению стабилитрона и ключевого транзистора. Далее напряжение на конденсаторе С2 снова увеличивается до момента включения стабилитрона и.транзистора и т.д. Эти процессы обеспечивают автоматическую стабилизацию выходного напряжения.

В режиме холостого хода выпрямителя ключевой транзистор VT1 открыт большую часть полупериода сетевого напряжения, и на накопительный конденсатор С2 поступают узкие импульсы тока с большой паузой (рис.4а). При подключении нагрузки длительность открытого состояния транзистора уменьшается (рис.4б). Это приводит к увеличению длительности импульса тока, поступающего через VD2 на С2, и увеличению напряжения на нем, т.е. к поддержанию выходного напряжения на прежнем уровне. Процесс автостабилизации выходного напряжения очень похож на функционирование импульсного стабилизатора напряжения с широтно-импульсным регулированием. Только в предлагаемом устройстве частота следования импульсов равна частоте пульсации напряжения на С2 (в схеме на рис.3 эта частота равна 100 Гц).



Ключевой транзистор VT1 для уменьшения потерь должен быть с большим коэффициентом усиления, например составной КТ972А, КТ829А, КТ827А и др.

Стабилизированный выпрямитель, собранный по схеме рис.3, обеспечивает выходное напряжение: - на холостом ходу - 11,68 В; - на нагрузке 290 Ом - 11,6В-

Такая небол

 
YOU ARE HERE:
© 2009, 2010, 2011, 2012 Mic-ron.ru - Сайт для радиолюбителя, схемы, помощь, радиолюбительские конструкции, журнал радиолюбитель. Форум, фото и видео
Так же схемы и устройства станков, чертежи и принципы работы станков, помогут вам сделать многое своими руками
регулятор мощности | радиосхемы своими руками | мини заводы своими руками | 1а616 | самодельное зарядное устройство для автомобильного аккумулятора | регулятор для паяльника |
Rambler's Top100